ИВМ СО РАН Поиск 
Семинары Института
институт
структура
сотрудники
аспирантура
конференции
семинары
ученый совет
совет молодых ученых
профсоюз
техническая база
история
фотогалерея

исследования
разработки
экспедиции
эл. архив
годовые отчеты

ссылки
библиотека
конкурсы
документы
адреса и телефоны

метеостанция
 

Группы и паркетогранники

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Все ]

Заседание

четверг, 9 октября 2014 г., 19:00, ИВМ СО РАН, к.416; bbb.kspu.ru

Макосий Алексей Иванович
Об алгоритмах нахождения (2x2,2)-троек инволюций в группах, допускающих компьютерное моделирование

Будут представлены алгоритмы, приводящие с точностью до сопряжённости к каждым порождающим группу трём инволюциям, две из которых перестановочны. Кроме таких троек, называемых (2x2,2)-тройками инволюций и найденных по анонсируемым алгоритмам, в Атласе конечных простых неабелевых (2x2,2)-порожденных групп (http://algebra.krasn.ru/) расположены также библиографические источники, по которым можно получить представление о современном состоянии рассматриваемых вопросов.

Тимофеенко Алексей Викторович
Предложения о реферативной части осенне-зимних заседаний семинара

На обсуждение выносятся темы и конкретные работы для реферативных докладов. В частности, и от участников ожидаются такие предложения для рефератов, которые вызвали бы интерес представителя каждой специальности, представленной семинаром.

Заседание

четверг, 2 октября 2014 г., 19:00, ауд.3-13, ул.Перенсона,7; bbb.kspu.ru

Тимофеенко Алексей Викторович
К вопросу «Существует ли группа Голода, изоморфная АТ-группе? "

Группы из названия доклада являются финитно аппроксимируемыми нелокально конечными $p$-группами. Группа Голода (Е. С. Голод, 1964–1968) является конечно порождённой подгруппой присоединённой группы фактор-алгебры по однородному идеалу алгебры многочленов без свободного члена от конечного числа свободных порождающих над полем характеристики $p$. Группа Голода задаётся многочленами, которые порождают этот однородный идеал. Из конструкции АТ-групп (А. В. Рожков, 1986), вмещающей в себя все известные нелокально конечные периодические группы преобразований, будут рассматриваться только подгруппы группы автоморфизмов деревьев с $p$-ветвлением. Будут представлены облегченные версии вопроса из названия доклада и применения систем компьютерной алгебры в построении примеров групп.

Заседание

четверг, 25 сентября 2014 г., 19:00, ул. Перенсона, 7, ауд.3-13, bbb.kspu.ru

Сагалаков Н. О. Тимофеенко Алексей Викторович
Паркетные многоугольники со сторонами длин 1 или 2, составленные из квадратов и треугольников с единичными ребрами.

Заседание

четверг, 18 сентября 2014 г., 19:00, ул. Перенсона, 7, ауд.3-13, bbb.kspu.ru

Михайлов А. Н. (Красноярский край, г. Минусинск), Тимофеенко Алексей Викторович
О применении групп изометрий в классификации выпуклых многогранников с паркетными гранями

Заседание

четверг, 11 сентября 2014 г., 19:00, bbb.kspu.ru

Макосий Алексей Иванович, Тимофеенко Алексей Викторович
Атлас конечных простых неабелевых (2x2,2)-порожденных групп

Заседание

пятница, 27 июня 2014 г., 16:30, Красноярск, пр. Свободный, 79, Сибирский федеральный университет, ауд.31-06/4, bbb.kspu.ru

Судак Дарья Николаевна, Тимофеенко А. В.
Комплекты диагоналей некоторых правильногранных тел

В прошлом году была анонсирована,[1],

Теорема. Два выпуклых многогранника с правильными гранями конгруэнтны тогда и только тогда, когда они имеют одинаковые комплекты диагоналей.

Комплектом диагоналей ее авторы называют отрезки, соединяющие каждые две вершины многогранника. Важная сама по себе любая новая характеризация многогранника имеет и ряд приложений. Одно из них, необходимое для быстрого решения задачи изоморфизма двух алгебраических моделей многогранников планируется обсудить вместе с некоторыми другими представлениями многогранников с паркетными гранями,[2-5].

1.Архаров Д. В., Гурин А. М., Петров Л. В., Попов А. Н., Черный А. С., Ромакина Л. Н. Об алгоритме распознавания типов многогранников. Алгебра и логика: теория и приложения: тез.докл. междунар.конф., посв. памяти В. П. Шункова, Красноярск, 21-27 июля 2013 г. Красноярск, Сиб.федер.ун-т, 2013, 15--17.
2. Залгаллер~В.~А. Выпуклые многогранники с правильными гранями // Зап. науч. Семинаров ЛОМИ. 1967. Т. 2. С. 5 218.
3. Тимофеенко А. В. К перечню выпуклых правильногранников // Современные проблемы математики и механики. Том VI. Математика. Выпуск 3. К 100-летию со дня рождения Н. В. Ефимова./ Под ред. И. Х. Сабитова и В. Н. Чубарикова. –М.: Изд-во МГУ, 2011, С.155--170.
4. Пряхин~Ю.~А. Выпуклые многогранники, грани которых равноугольны или сложены из равноугольных //Зап. научн. семинаров ЛОМИ 1974. Т.45. С. 111--112.
5. Тимофеенко~А.~В. О ВЫПУКЛЫХ МНОГОГРАННИКАХ С РАВНОУГОЛЬНЫМИ И ПАРКЕТНЫМИ ГРАНЯМИ // Чебышевский сб., 2011,том 12,выпуск 2,страницы 118–126.

Заседание

четверг, 20 марта 2014 г., 17:00, bbb.kspu.ru

Абубакирова Елена Геннадьевна, Тимофеенко Алексей Викторович
О простых многогранниках, которые при допущении фиктивных вершин становятся составными

Будет представлена более детально основная теорема работы
А. В. Тимофеенко, “О выпуклых многогранниках с равноугольными и паркетными
гранями”, Чебышевский сб., 12 :2 (2011), 118–126
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cheb&paperid=84&option_lang=rus
Эта теорема усилена результатами Ю. Филатовой, Е. Окладниковой и 
Е. Абубакировой, которые тоже будут доложены.
Выносятся на обсуждение вопросы решения проблемы нахождения всех с 
точностью до комбинаторной эквивалентности выпуклых многогранников с 
паркетными гранями.

Будет представлен алгоритм построения орбиты 1-, 2-, 3- 4-мерных фигур
при действии группой движений (изометрий) и его реализация в системах
компьютерной алгебры и графики.

Заседание

вторник, 11 марта 2014 г., 17:00

Панафидин Семен Сергеевич (СФУ), Кукарцев Анатолий Михайлович (СибГАУ)
Композитная мультиверсионная система распределенного динамического графического многомерного интерактивного проектирования и моделирования nDimension

Заседание

четверг, 6 марта 2014 г., 15:00, Сиб.фед.ун-т, ИМиФИ, ауд.34-17

Востоков Сергей Владимирович (СпбГУ, Санкт-Петербург)
Спаривания в числовых полях и применение в криптографии

Заседание

среда, 26 февраля 2014 г., 18:00, ул. Перенсона, 7, ауд.1-11, http://bbb.kspu.ru

Климина Александра Сергеевна
Реализация и сравнения эффективности алгоритмов факторизации: (p-1)-метода Полларда и алгоритма Ленстры.

Заседание

четверг, 20 февраля 2014 г., 12:30, ул. Ады Лебедевой, 78, конференц-зал «Орбита» общественно-информационного центра Госкорпорации «Росатом»

Гаврилин Владимир Константинович
О делении отрезка на равные части

Заседание

четверг, 13 февраля 2014 г., 12:30, ул. Перенсона, 7, ауд.3-13, http://bbb.kspu.ru

Тимофеенко Алексей Викторович
О выпуклых соединениях тетраэдров и правильногранных пирамид с квадратным основанием

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 Все ]